# Data Mining and Machine Learning (Machine Learning: Symbolische Ansätze)



#### **Learning Rule Sets**

- Introduction
  - Learning Rule Sets
- Separate-and-Conquer Rule Learning
  - Covering algorithm
- Overfitting and Pruning
- Multi-Class Problems



## **Learning Rule Sets**



- many datasets cannot be solved with a single rule
  - not even the simple weather dataset
  - they need a rule set for formulating a target theory
- finding a computable generality relation for rule sets is not trivial
  - adding a condition to a rule specializes the theory
  - adding a new rule to a theory generalizes the theory
- practical algorithms use different approaches
  - covering or separate-and-conquer algorithms
  - based on heuristic search

## **A Sample Database**



| No. | Education  | Marital S. | Sex. | Children? | Approved? |
|-----|------------|------------|------|-----------|-----------|
| 1   | Primary    | Single     | M    | N         | -         |
| 2   | Primary    | Single     | M    | Y         | -         |
| 3   | Primary    | Married    | M    | N         | +         |
| 4   | University | Divorced   | F    | N         | +         |
| 5   | University | Married    | F    | Υ         | +         |
| 6   | Secondary  | Single     | M    | N         | -         |
| 7   | University | Single     | F    | N         | +         |
| 8   | Secondary  | Divorced   | F    | N         | +         |
| 9   | Secondary  | Single     | F    | Υ         | +         |
| 10  | Secondary  | Married    | M    | Υ         | +         |
| 11  | Primary    | Married    | F    | N         | +         |
| 12  | Secondary  | Divorced   | M    | Υ         | -         |
| 13  | University | Divorced   | F    | Υ         | -         |
| 14  | Secondary  | Divorced   | M    | N         | +         |

Property of Interest ("class variable")

#### A Learned Rule Set



```
E=primary
                AND S=male
                             AND M=married
                                            AND C=no
IF
                                                        THEN yes
   E=university AND S=female AND M=divorced AND C=no
                                                        THEN yes
   E=university AND S=female AND M=married
                                            AND C=yes
                                                        THEN yes
   E=university AND S=female AND M=single
                                            AND C=no
                                                        THEN yes
   E=secondary AND S=female AND M=divorced AND C=no
                                                        THEN yes
   E=secondary AND S=female AND M=single
                                            AND C=yes
ΙF
                                                        THEN yes
                             AND M=married AND C=yes
   E=secondary AND S=male
                                                        THEN yes
   E=primary AND S=female AND M=married
                                            AND C=no
                                                        THEN yes
   E=secondary AND S=male AND M=divorced AND C=no
                                                        THEN yes
ELSE no
```

- The solution is
  - a set of rules
  - that is complete and consistent on the training examples
- → it must be part of the version space
- but it does not generalize to new examples!



#### The Need for a Bias



- rule sets can be generalized by
  - generalizing an existing rule (as in (Batch-)Find-S)
  - introducing a new rule (this is new)
- a minimal generalization could be
  - introduce a new rule that covers only the new example
- Thus:
  - The solution on the previous slide will be found as a result of the FindS algorithm
  - FindG (or Batch-FindG) are less likely to find such a bad solution because they prefer general theories
- But in principle this solution is part of the hypothesis space and also of the version space
  - ⇒ we need a search bias to prevent finding this solution!

#### **A Better Solution**



## **Recap: Subgroup Discovery**



- Abstract algorithm for learning a single rule:
  - 1. Start with an empty theory T and training set E
  - 2. Learn a single (consistent) rule R from E and add it to T
  - 3. return T
- Problem:
  - the basic assumption is that the found rules are complete, i.e., they cover all positive examples
  - What if they don't?
- Simple solution:
  - If we have a rule that covers part of the positive examples:
  - add some more rules that cover the remaining examples

## **Key idea of Covering algorithms**



#### Properties of Subgroup Discovery algorithms:

- Consistency can always be maximized
  - a rule that covers no negative examples can always be found
- Completeness can not necessarily be ensured
  - Many concepts can only be formulated with multiple rules

#### Learning strategy:

- Try to learn a rule that is as consistent as possible
- Fix completeness by repeating this step until each (positive) training example is covered by at least one rule

## **Relaxing Completeness and Consistency**



- So far we have defined correctness on training data as consistency + completeness
  - we aim for a rule that covers all positive and no negative examples
- This is not always a good idea (→ overfitting)
- Example:

Training set with 200 examples, 100 positive and 100 negative

- Rule Set A consists of 100 complex rules, each covering a single positive example and no negatives
  - → A is complete and consistent on the training set
- Rule Set B consists of a single rule, covering 99 positive and 1 negative example
  - $\rightarrow$  B is incomplete and inconsistent on the training set
- Which one will generalize better to unseen examples?



# Separate-and-Conquer Rule Learning



- Learn a set of rules, one rule after the other using greedy covering
  - 1. Start with an empty theory T and training set E
  - 2. Learn a single (consistent) rule R from E and add it to T
  - 3. If T is satisfactory (complete), return T
  - 4. Else:
    - Separate: Remove examples explained by R from E
    - Conquer: goto 2.
- One of the oldest family of learning algorithms
- Different learners differ in how they find a single rule
- Completeness and consistency requirements are typically loosened

# Separate-and-Conquer Rule Learning





(i) Original Data



## **Covering Strategy**



- Covering or Separate-and-Conquer rule learning learning algorithms learn one rule at a time
  - and then removes the examples covered by this rule
- This corresponds to a path in coverage space:
  - The empty theory R<sub>0</sub> (no rules)
     corresponds to (0,0)
  - Adding one rule never decreases p or n because adding a rule covers more examples (generalization)
  - The universal theory R+ (all examples are positive) corresponds to (N,P)



#### **Rule Selection with Precision**



Precision tries to pick the steepest continuation of the curve

 tries to maximize the area under this curve (→ AUC: Area Under the ROC Curve)

no particular angle of isometrics is preferred, i.e. no preference for a certain

cost model



## **Rule Selection with Accuracy**



- Accuracy assumes the same costs in all subspaces
  - a local optimum in a sub-space is also a global optimum in the entire space



#### Which Heuristic is Best?



- There have been many proposals for different heuristics
  - and many different justifications for these proposals
  - some measures perform better on some datasets, others on other datasets
- Large-Scale Empirical Comparison:
  - 27 training datasets
    - on which parameters of the heuristics were tuned)
  - 30 independent datasets
    - which were not seen during optimization
  - Goals:
    - see which heuristics perform best
    - determine good parameter values for parametrized functions

# **Best Parameter Settings**



for m-estimate: m = 22.5



## **Empirical Comparison of Different Heuristics**



|                                 | <b>Training</b> | Datasets     | Independent Datasets |             |  |  |
|---------------------------------|-----------------|--------------|----------------------|-------------|--|--|
| Heuristic                       | <b>Accuracy</b> | # Conditions | Accuracy             | #Conditions |  |  |
| Ripper (JRip)                   | 84,96           | 16,93        | 78,97                | 12,20       |  |  |
| Relative Cost Metric (c =0.342) | 85,63           | 26,11        | 78,87                | 25,30       |  |  |
| m-Estimate (m = 22.466)         | 85,87           | 48,26        | 78,67                | 46,33       |  |  |
| Correlation                     | 83,68           | 37,48        | 77,54                | 47,33       |  |  |
| Laplace                         | 82,28           | 91,81        | 76,87                | 117,00      |  |  |
| Precision                       | 82,36           | 101,63       | 76,22                | 128,37      |  |  |
| Linear Cost Metric (c = 0.437)  | 82,68           | 106,30       | 76,07                | 122,87      |  |  |
| WRA                             | 82,87           | 14,22        | 75,82                | 12,00       |  |  |
| Accuracy                        | 82,24           | 85,93        | 75,65                | 99,13       |  |  |

- Ripper is best, but uses pruning (the others don't)
- the optimized parameters for the m-estimate and the relative cost metric perform better than all other heuristics
  - also on the 30 datasets on which they were not optimized
- some heuristics clearly overfit (bad performance with large rules)
- WRA over-generalizes (bad performance with small rules)



# LeGo Approach to Rule Learning



- General framework for aggregating local patterns to global models
  - key idea: use frequently occurring patterns are features



## **Overfitting**



- Overfitting
  - Given
    - a fairly general model class
    - enough degrees of freedom
  - you can always find a model that explains the data
    - even if the data contains error (noise in the data)
    - in rule learning: each example is a rule
- Such concepts do not generalize well!
  - $\rightarrow$  Pruning



## **Overfitting - Illustration**





## **Overfitting Avoidance**



- A perfect fit to the data is not always a good idea
  - data could be imprecise
    - e.g., random noise
  - the hypothesis space may be inadequate
    - a perfect fit to the data might not even be possible
    - or it may be possible but with bad generalization properties (e.g., generating one rule for each training example)
- Thus it is often a good idea to avoid a perfect fit of the data
  - fitting polynomials so that
    - not all points are exactly on the curve
  - learning concepts so that
    - not all positive examples have to be covered by the theory
    - some negative examples may be covered by the theory

## **Overfitting Avoidance**







- learning concepts so that
  - not all positive examples have to be covered by the theory
  - some negative examples may be covered by the theory

## **Complexity of Concepts**



- For simpler concepts there is less danger that they are able to overfit the data
  - for a polynomial of degree n one can choose n+1 parameters in order to fit the data points
- → many learning algorithms focus on learning simple concepts
  - a short rule that covers many positive examples (but possibly also a few negatives) is often better than a long rule that covers only a few positive examples
- Pruning: Complex rules will be simplified
  - Pre-Pruning:
    - during learning
  - Post-Pruning:
    - after learning



## **Pre-Pruning**



- keep a theory simple while it is learned
  - decide when to stop adding conditions to a rule (relax consistency constraint)
  - decide when to stop adding rules to a theory (relax completeness constraint)
  - efficient but not accurate



# **Pre-Pruning Heuristics**



- 1. Thresholding a heuristic value
  - require a certain minimum value of the search heuristic
  - e.g.: Precision > 0.8.
- 2. Foil's Minimum Description Length Criterion
  - the length of the theory plus the exceptions (misclassified examples)
     must be shorter than the length of the examples by themselves
  - lengths are measured in bits (information content)
- 3. CN2's Significance Test
  - tests whether the distribution of the examples covered by a rule deviates significantly from the distribution of the examples in the entire training set
  - if not, discard the rule



## **Minimum Coverage Filtering**



#### filter rules that do not cover a minimum number of

#### positive examples (support)



#### all examples (coverage)



# **Support/Confidence Filtering**



- basic idea: filter rules that
  - cover not enough positive examples  $(p < supp_{min})$
  - are not precise enough  $(h_{prec} < conf_{min})$
- effects:
  - all but a region around (0,P) is filtered



→ we will return to support/confidence in the context of association rule learning algorithms!

#### **CN2's likelihood ratio statistics**



$$h_{LRS} = 2(p \log \frac{p}{e_p} + n \log \frac{n}{e_n})$$

- $e_p = (p+n)\frac{P}{P+N}; \quad e_n = (p+n)\frac{N}{P+N}$
- are the expected number of positive and negative example in the p+n covered examples.

- basic idea: measure significant deviation from prior probability distribution
- effects:
  - non-linear isometrics
    - similar to m-estimate
    - but prefer rules near the edges
  - distributed χ<sup>2</sup>
  - significance levels 95% (dark) and 99% (light grey)



#### Correlation



- basic idea: measure correlation coefficient of predictions with target
- effects:
  - non-linear isometrics
  - in comparison to WRA
    - prefers rules near the edges
    - steepness of connection of intersections with edges increases
  - equivalent to χ<sup>2</sup>
  - grey area = cutoff of 0.3

$$h_{Corr} = \frac{p(N-n) - (P-p)n}{\sqrt{PN(p+n)(P-p+N-n)}}$$



## **MDL-Pruning in Foil**



- based on the Minimum Description Length-Principle (MDL)
  - is it more effective to transmit the rule or the covered examples?
    - compute the information contents of the rule (in bits)
    - compute the information contents of the examples (in bits)
    - if the rule needs more bits than the examples it covers, on can directly transmit the examples → no need to further refine the rule
  - Details → (Quinlan, 1990)
- doesn't work all that well
  - if rules have expections (i.e., are inconsistent), the negative examples must be encoded as well
    - they must be transmitted, otherwise the receiver could not reconstruct which examples do not conform to the rule
  - finding a minimal encoding (in the information-theoretic sense) is practically impossible

# Foil's MDL-based Stopping Criterion



costs for transmitting how many examples we have (can be ignored)

$$h_{MDL} = \log_2(P+N) + \log_2\left(\frac{P+N}{p}\right)$$

costs for transmitting which of the P+N examples are covered and positive

- basic idea: compare the encoding length of the rule l(r) to the encoding length  $h_{MDL}$  of the example.
  - we assume l(r) = c constant
- effects:
  - equivalent to filtering on support
  - because function only depends on p



# **Anomaly of Foil's Stopping criterion**



- We have tacitly assumed N > P...
- $h_{MDL}$  assumes its maximum at p = (P+N)/2
  - thus, for P > N, the maximum is not on top!
- there may be rules
  - of equal length
  - covering the same number of negative examples
  - so that the rule covering fewer positive examples is acceptable
  - but the rule covering more positive examples is not!



#### **How Foil Works**



- → Foil (almost) implements Support/Confidence Filtering (will be explained later → association rules)
  - filtering of rules with no information gain
    - after each refinement step, the region of acceptable rules is adjusted as in precision/ confidence filtering
  - filtering of rules that exceed rule length
    - after each refinement step, the region of acceptable rules adjusted as in support filtering



#### **Pre-Pruning Systems**



- Foil:
  - Search heuristic: Foil Gain
  - Pruning: MDL-Based
- **CN2**:
  - Search heuristic: Laplace
  - Pruning: Likelihood Ratio
- Fossil:
  - Search heuristic: Correlation
  - Pruning: Threshold



## **Post Pruning**





# **Post-Pruning: Example**



| IF | E=primary    | AND | S=male   | AND | M=single   | AND | C=no  | THEN | no  |
|----|--------------|-----|----------|-----|------------|-----|-------|------|-----|
| IF | E=primary    | AND | S=male   | AND | M=single   | AND | C=yes | THEN | no  |
| IF | E=primary    | AND | S=male   | AND | M=married  | AND | C=no  | THEN | yes |
| IF | E=university | AND | S=female | AND | M=divorced | AND | C=no  | THEN | yes |
| IF | E=university | AND | S=female | AND | M=married  | AND | C=yes | THEN | yes |
| IF | E=secondary  | AND | S=male   | AND | M=single   | AND | C=no  | THEN | no  |
| IF | E=university | AND | S=female | AND | M=single   | AND | C=no  | THEN | yes |
| IF | E=secondary  | AND | S=female | AND | M=divorced | AND | C=no  | THEN | yes |
| IF | E=secondary  | AND | S=female | AND | M=single   | AND | C=yes | THEN | yes |
| IF | E=secondary  | AND | S=male   | AND | M=married  | AND | C=yes | THEN | yes |
| IF | E=primary    | AND | S=female | AND | M=married  | AND | C=no  | THEN | yes |
| IF | E=secondary  | AND | S=male   | AND | M=divorced | AND | C=yes | THEN | no  |
| IF | E=university | AND | S=female | AND | M=divorced | AND | C=yes | THEN | no  |
| IF | E=secondary  | AND | S=male   | AND | M=divorced | AND | C=no  | THEN | yes |

# **Post-Pruning: Example**



| IF  | S=male     | AND | M=single | THEN | no  |
|-----|------------|-----|----------|------|-----|
| IF  | M=divorced | AND | C=yes    | THEN | no  |
| ELS | SE         |     |          |      | yes |

# **Reduced Error Pruning**



- basic idea
  - optimize the accuracy of a rule set on a separate pruning set
  - 1. split training data into a growing and a pruning set
  - learn a complete and consistent rule set covering all positive examples and no negative examples
  - 3. as long as the error on the pruning set does not increase
    - delete condition or rule that results in the largest reduction of error on the pruning set
  - 4. return the remaining rules
- REP is accurate but not efficient
  - $O(n^4)$

### **Incremental Reduced Error Pruning**





### **Incremental Reduced Error Pruning**



- Prune each rule right after it is learned:
  - 1. split training data into a growing and a pruning set
  - 2. learn a consistent rule covering only positive examples
  - 3. delete conditions as long as the error on the pruning set does not increase
  - 4. if the rule is better than the default rule
    - add the rule to the rule set
    - goto 1.
- More accurate, much more efficient
  - because it does not learn overly complex intermediate concept
  - REP:  $O(n^4)$  I-REP:  $O(n \log^2 n)$
- Subsequently used in RIPPER rule learner (Cohen, 1995)
  - JRip in Weka



#### **Multi-Class Classification**



| No. | Education  | Marital S. | Sex. | Children? | Car    |
|-----|------------|------------|------|-----------|--------|
| 1   | Primary    | Single     | M    | N         | Sports |
| 2   | Primary    | Single     | M    | Y         | Family |
| 3   | Primary    | Married    | M    | N         | Sports |
| 4   | University | Divorced   | F    | N         | Mini   |
| 5   | University | Married    | F    | Y         | Mini   |
| 6   | Secondary  | Single     | M    | N         | Sports |
| 7   | University | Single     | F    | N         | Mini   |
| 8   | Secondary  | Divorced   | F    | N         | Mini   |
| 9   | Secondary  | Single     | F    | Υ         | Mini   |
| 10  | Secondary  | Married    | M    | Υ         | Family |
| 11  | Primary    | Married    | F    | N         | Mini   |
| 12  | Secondary  | Divorced   | M    | Υ         | Family |
| 13  | University | Divorced   | F    | Υ         | Sports |
| 14  | Secondary  | Divorced   | M    | N         | Sports |

Property of Interest ("class variable")

#### **Multi-class problems**



- GOAL: discriminate c classes from each other
- PROBLEM: many learning algorithms are only suitable for binary (2-class) problems
- SOLUTION:

"Class binarization":

Transform an *c*-class problem into a series of 2-class problems



#### **Class Binarization for Rule Learning**



- None
  - class of a rule is defined by the majority of covered examples
  - decision lists, CN2 (Clark & Niblett 1989)
- One-against-all / unordered
  - foreach class c: label its examples positive, all others negative
  - CN2 (Clark & Boswell 1991), Ripper -a unordered
  - Another variant in Ripper sorts the classes first and learns first against rest - remove first - repeat
- Pairwise Classification / one-vs-one
  - Learn one rule-set for each pair of classes
- Error Correcting Output Codes (Dietterich & Bakiri, 1995)
  - generalized by (Allwein, Schapire, & Singer, JMLR 2000)
    - → Ensemble Methods



# One-against-all binarization





Treat each class as a separate concept:

- c binary problems, one for each class
- label examples of one class positive, all others negative



#### **Prediction**



- It can happen that multiple rules fire for a example
  - no problem for concept learning (all rules say +)
  - but problematic for multi-class learning
    - because each rule may predict a different class
  - Typical solution:
    - use rule with the highest (Laplace) precision for prediction
  - more complex approaches are possible: e.g., voting
- It can happen that no rule fires on a example
  - no problem for concept learning (the example is then -)
  - but problematic for multi-class learning
    - because it remains unclear which class to select
  - Typical solution: predict the largest class
  - more complex approaches:
    - e.g., rule stretching: find the most similar rule to an example
      - → similarity-based learning methods

#### **Pairwise Classification**



- c(c-1)/2 problems
- each class against each other class





- smaller training sets
- simpler decision boundaries
- larger margins



#### **Prediction**



#### Voting:

- as in a sports tournament:
  - each class is a player
  - each player plays each other player, i.e., for each pair of classes we get a prediction which class "wins"
  - the winner receives a point
  - the class with the most points is predicted
    - tie breaks, e.g., in favor of larger classes

#### Weighted voting:

- the vote of each theory is proportional to its own estimate of its correctness
- e.g., proportional to proportion of examples of the predicted class covered by the rule that makes the prediction

# **Accuracy**



| one-vs-all | pairwise |
|------------|----------|
|------------|----------|

|                  | Ri     | pper    | V              |       |    |
|------------------|--------|---------|----------------|-------|----|
| dataset          | unord. | ordered | $\mathbb{R}^3$ | ratio | <  |
| abalone          | 81.03  | 82.18   | 72.99          | 0.888 | ++ |
| covertype        | 35.37  | 38.50   | 33.20          | 0.862 | ++ |
| letter           | 15.22  | 15.75   | 7.85           | 0.498 | ++ |
| sat              | 14.25  | 17.05   | 11.15          | 0.654 | ++ |
| shuttle          | 0.03   | 0.06    | 0.02           | 0.375 | =  |
| vowel            | 64.94  | 53.25   | 53.46          | 1.004 | =  |
| car              | 5.79   | 12.15   | 2.26           | 0.186 | ++ |
| glass            | 35.51  | 34.58   | 25.70          | 0.743 | ++ |
| image            | 4.15   | 4.29    | 3.46           | 0.808 | +  |
| lr spectrometer  | 64.22  | 61.39   | 53.11          | 0.865 | ++ |
| optical          | 7.79   | 9.48    | 3.74           | 0.394 | ++ |
| page-blocks      | 2.85   | 3.38    | 2.76           | 0.816 | ++ |
| solar flares (c) | 15.91  | 15.91   | 15.77          | 0.991 | =  |
| solar flares (m) | 4.90   | 5.47    | 5.04           | 0.921 | =  |
| soybean          | 8.79   | 8.79    | 6.30           | 0.717 | ++ |
| thyroid (hyper)  | 1.25   | 1.49    | 1.11           | 0.749 | +  |
| thyroid (hypo)   | 0.64   | 0.56    | 0.53           | 0.955 | =  |
| thyroid (repl.)  | 1.17   | 0.98    | 1.01           | 1.026 | =  |
| vehicle          | 28.25  | 30.38   | 29.08          | 0.957 | =  |
| yeast            | 44.00  | 42.39   | 41.78          | 0.986 | =  |
| average          | 21.80  | 21.90   | 18.52          | 0.770 |    |

- error rates on 20 datasets with 4 or more classes
  - 10 significantly better (p > 0.99, McNemar)
  - 2 significantly better (p > 0.95)
  - 8 equal
  - never (significantly) worse

### **Advantages of the Pairwise Approach**



- Accuracy
  - better than one-against-all (also in independent studies)
  - improvement appr. on par with 10 boosting iterations
- Example Size Reduction
  - subtasks might fit into memory where entire task does not
- Stability
  - simpler boundaries/concepts with possibly larger margins
- Understandability
  - similar to pairwise ranking as recommended by Pyle (1999)

- Parallelizable
  - each task is independent of all other tasks
- Modularity
  - train binary classifiers once
  - can be used with different combiners
- Ranking ability
  - provides a ranking of classes for free
- Complexity?
  - we have to learn a quadratic number of theories...
  - but with fewer examples



# **Training Complexity of PC**



**Lemma:** The total number of training examples for all binary classifiers in a pairwise classification ensemble is  $(c-1)\cdot n$ 

#### Proof:

• each of the n training examples occurs in all binary tasks where its class is paired with one of the other c-1 classes

**Theorem:** For learning algorithms with at least linear complexity, pairwise classification is more efficient than one-against-all.

#### **Proof Sketch:**

- one-against-all binarization needs a total of  $c \cdot n$  examples
- fewer training examples are distributed over more classifiers
- more small training sets are faster to train than few large training sets
- for complexity  $f(n) = n^o$  (o > 1):  $o > 1 \rightarrow \sum n_i^o < (\sum n_i)^o$



#### **Preference Data**



| No. | Education  | Marital S. | Sex. | Children? | Car Preferences                |
|-----|------------|------------|------|-----------|--------------------------------|
| 1   | Primary    | Single     | М    | N         | Sports > Family                |
| 2   | Primary    | Single     | М    | Υ         | Family > Sports, Family > Mini |
| 3   | Primary    | Married    | М    | N         | Sports > Family > Mini         |
| 4   | University | Divorced   | F    | N         | Mini > Family                  |
| 5   | University | Married    | F    | Y         | Mini > Sports                  |
| 6   | Secondary  | Single     | М    | N         | Sports > Mini > Family         |
| 7   | University | Single     | F    | N         | Mini > Family, Mini > Sports   |
| 8   | Secondary  | Divorced   | F    | N         | Mini > Sports                  |
| 9   | Secondary  | Single     | F    | Y         | Mini > Sports, Family > Sports |
| 10  | Secondary  | Married    | М    | Y         | Family > Mini                  |
| 11  | Primary    | Married    | F    | N         | Mini > Family                  |
| 12  | Secondary  | Divorced   | М    | Y         | Family > Sports > Mini         |
| 13  | University | Divorced   | F    | Υ         | Sports > Mini, Family > Mini   |
| 14  | Secondary  | Divorced   | М    | N         | Sports > Mini                  |

#### **Class Information encodes Preferences**



dataset with class label for each example



a > b means: for this example label a is preferred over label b

example with unknown class label

| <b>A</b> 1 | <b>A2</b> | <b>A3</b> | Label |
|------------|-----------|-----------|-------|
| 0          | 0         | 1         | ?     |

Label Preference Learner

| <b>A</b> 1 | <b>A2</b> | <b>A3</b> | Label |
|------------|-----------|-----------|-------|
| 0          | 0         | 1         | b     |

# **General Label Preference Learning Problem**



dataset with preferences for each example

| <b>A1</b> | <b>A2</b> | <b>A3</b> | Pref.                 |
|-----------|-----------|-----------|-----------------------|
| 1         | 1         | 1         | a > b   b > c         |
| 1         | 1         | 0         | a > b   c > b         |
| 1         | 0         | 1         | b > a                 |
| 1         | 0         | 0         | b > a   a > c   c > b |
| 0         | 0         | 0         | c > a                 |
| 0         | 1         | 0         | c > b   c > a         |
| 0         | 1         | 1         | a > c                 |

Each example may have an arbitrary number of preferences

example with unknown preferences



Label Preference Learner

We typically predict a complete ranking (a total order)

| <b>A1</b> | <b>A2</b> | <b>A3</b> | Pref.     |
|-----------|-----------|-----------|-----------|
| 0         | 0         | 1         | b > a > 0 |

# **Label Ranking**



- Preference learning scenario in which
  - contexts are characterized by features
  - no information about the items is given except a unique name (a label)

#### **GIVEN:**

a set of labels:

a set of contexts:

• for each training context  $e_k$ :

a set of preferences

$$L = \{ \lambda_i | i = 1 \dots c \}$$

$$E = \{e_k | k = 1 \dots n\}$$

$$P_k = \{\lambda_i \succ_k \lambda_j\} \subseteq L \times L$$

#### FIND:

 a label ranking function that orders the labels for any given context

# Pairwise Preference Learning



| <b>A1</b> | <b>A2</b> | <b>A3</b> | Pref.                         | <b>A1</b> | <b>A2</b> | <b>A3</b> | Pref.                                     |
|-----------|-----------|-----------|-------------------------------|-----------|-----------|-----------|-------------------------------------------|
| 1         | 1         | 1         | $a > b \mid b > c$            | 0         | 0         | 0         | c≻ a                                      |
| 1         | 1         | 0         | $a > b \mid c > b$            | 0         | 1         | 0         | <b>c</b> ≻ <b>b</b>   <b>c</b> ≻ <b>a</b> |
| 1         | 0         | 1         | b≻ a                          | 0         | 1         | 1         | a≻c                                       |
| 1         | 0         | 0         | $b > a \mid a > c \mid c > b$ |           |           |           |                                           |

dataset with preferences for each example

one dataset for each preference



| <b>A</b> 1 | <b>A2</b> | А3 | b≻c |
|------------|-----------|----|-----|
| 1          | 1         | 1  | 1   |
| 1          | 1         | 0  | 0   |
| 1          | 0         | 0  | 0   |
| 0          | 1         | 0  | 0   |
| U          | <u> </u>  | U  |     |

| <b>A</b> 1 | <b>A2</b> | <b>A3</b> | a≻c |
|------------|-----------|-----------|-----|
| 1          | 0         | 0         | 1   |
| 0          | 0         | 0         | 0   |
| 0          | 1         | 0         | 0   |
| 0          | 1         | 1         | 1   |
|            |           |           |     |

| <b>A</b> 1 | <b>A2</b> | <b>A3</b> | Pref. | $M_{ab}$ | $M_{bc}$ |       | <br> |       |
|------------|-----------|-----------|-------|----------|----------|-------|------|-------|
| 0          | 0         | 1         | ?     | — — — —  |          |       |      |       |
|            |           |           |       | b ≻ a    | I        | b ≻ c | 1    | a ≻ c |

| <b>A</b> 1 | <b>A2</b> | <b>A</b> 3 | Pref.  |
|------------|-----------|------------|--------|
| 0          | 0         | 1          | b≻a≻ c |
|            |           |            | A      |

# Regression



| No | Education  | Marital S. | Sex. | Children? | Income |
|----|------------|------------|------|-----------|--------|
| 1  | Primary    | Single     | М    | N         | 20,000 |
| 2  | Primary    | Single     | M    | Υ         | 23,000 |
| 3  | Primary    | Married    | М    | N         | 25,000 |
| 4  | University | Divorced   | F    | N         | 50,000 |
| 5  | University | Married    | F    | Y         | 60,000 |
| 6  | Secondary  | Single     | M    | N         | 45,000 |
| 7  | University | Single     | F    | N         | 80,000 |
| 8  | Secondary  | Divorced   | F    | N         | 55,000 |
| 9  | Secondary  | Single     | F    | Y         | 30,000 |
| 10 | Secondary  | Married    | M    | Υ         | 75,000 |
| 11 | Primary    | Married    | F    | N         | 35,000 |
| 12 | Secondary  | Divorced   | M    | Υ         | 70,000 |
| 13 | University | Divorced   | F    | Υ         | 65,000 |
| 14 | Secondary  | Divorced   | M    | N         | 38,000 |

Numeric Target Variable

# **Rule-Based Regression**



- Regression trees are quite successful
- Work on directly learning regression rules was not yet able to match that performance
  - Main Problem: How to define a good heuristic?
- Transformation approach:
  - Reduce regression to classification
  - use the idea of ε-insensitive loss functions proposed for SVMS:
  - all examples in an ε-environment of the value predicted in the rule head are considered to be positive, all others negative
  - rules can then be learned using regular heuristics for classification rules

$$\begin{array}{c} \text{negative} \\ |y - y_{\mathbf{r}}| > t_{\mathbf{r}} \end{array}$$

$$|y_{\mathbf{r}}| = 0 - \begin{cases} \text{positive} \\ |y - y_{\mathbf{r}}| \le t_{\mathbf{r}} \end{cases}$$

$$\begin{array}{l} \text{negative} \\ |y - y_{\mathbf{r}}| > t_{\mathbf{r}} \end{array}$$

# **Application Example: Venus Express Power Consumption**



- Goal
  - Learn a model of the energy consumption of the heating system of the Venus express
- Approach
  - Information about the consumption is available in hindsight
    - can be used to train a model
  - Best results obtained with ensembles of regression trees
    - local differences cannot be modeled
    - but trends can be captured well
- Partner
  - ESA / ESOC
  - University of Cordoba





# **Summary**



- Rules can be learned via top-down hill-climbing
  - add one condition at a time until the rule covers no more negative exs.
- Heuristics are needed for guiding the search
  - can be visualize through isometrics in coverage space
- Rule Sets can be learned one rule at a time
  - using the covering or separate-and conquer strategy
- Overfitting is a serious problem for all machine learning algorithms
  - too close a fit to the training data may result in bad generalizations
- Pruning can be used to fight overfitting
  - Pre-pruning and post-pruning can be efficiently integrated
- Multi-class problems can be addressed by multiple rule sets
  - one-against-all classification or pairwise classification