Data Mining and Machine Learning (Machine Learning: Symbolische Ansätze)

Learning Rule Sets

- Introduction
 - Learning Rule Sets
- Separate-and-Conquer Rule Learning
 - Covering algorithm
- Overfitting and Pruning
- Multi-Class Problems

Learning Rule Sets

- many datasets cannot be solved with a single rule
 - not even the simple weather dataset
 - they need a rule set for formulating a target theory
- finding a computable generality relation for rule sets is not trivial
 - adding a condition to a rule specializes the theory
 - adding a new rule to a theory generalizes the theory
- practical algorithms use different approaches
 - covering or separate-and-conquer algorithms
 - based on heuristic search

A Sample Database

No.	Education	Marital S.	Sex.	Children?	Approved?
1	Primary	Single	M	N	-
2	Primary	Single	M	Y	-
3	Primary	Married	M	N	+
4	University	Divorced	F	N	+
5	University	Married	F	Υ	+
6	Secondary	Single	M	N	-
7	University	Single	F	N	+
8	Secondary	Divorced	F	N	+
9	Secondary	Single	F	Υ	+
10	Secondary	Married	M	Υ	+
11	Primary	Married	F	N	+
12	Secondary	Divorced	M	Υ	-
13	University	Divorced	F	Υ	-
14	Secondary	Divorced	M	N	+

Property of Interest ("class variable")

A Learned Rule Set


```
E=primary
                AND S=male
                             AND M=married
                                            AND C=no
IF
                                                        THEN yes
   E=university AND S=female AND M=divorced AND C=no
                                                        THEN yes
   E=university AND S=female AND M=married
                                            AND C=yes
                                                        THEN yes
   E=university AND S=female AND M=single
                                            AND C=no
                                                        THEN yes
   E=secondary AND S=female AND M=divorced AND C=no
                                                        THEN yes
   E=secondary AND S=female AND M=single
                                            AND C=yes
ΙF
                                                        THEN yes
                             AND M=married AND C=yes
   E=secondary AND S=male
                                                        THEN yes
   E=primary AND S=female AND M=married
                                            AND C=no
                                                        THEN yes
   E=secondary AND S=male AND M=divorced AND C=no
                                                        THEN yes
ELSE no
```

- The solution is
 - a set of rules
 - that is complete and consistent on the training examples
- → it must be part of the version space
- but it does not generalize to new examples!

The Need for a Bias

- rule sets can be generalized by
 - generalizing an existing rule (as in (Batch-)Find-S)
 - introducing a new rule (this is new)
- a minimal generalization could be
 - introduce a new rule that covers only the new example
- Thus:
 - The solution on the previous slide will be found as a result of the FindS algorithm
 - FindG (or Batch-FindG) are less likely to find such a bad solution because they prefer general theories
- But in principle this solution is part of the hypothesis space and also of the version space
 - ⇒ we need a search bias to prevent finding this solution!

A Better Solution

Recap: Subgroup Discovery

- Abstract algorithm for learning a single rule:
 - 1. Start with an empty theory T and training set E
 - 2. Learn a single (consistent) rule R from E and add it to T
 - 3. return T
- Problem:
 - the basic assumption is that the found rules are complete, i.e., they cover all positive examples
 - What if they don't?
- Simple solution:
 - If we have a rule that covers part of the positive examples:
 - add some more rules that cover the remaining examples

Key idea of Covering algorithms

Properties of Subgroup Discovery algorithms:

- Consistency can always be maximized
 - a rule that covers no negative examples can always be found
- Completeness can not necessarily be ensured
 - Many concepts can only be formulated with multiple rules

Learning strategy:

- Try to learn a rule that is as consistent as possible
- Fix completeness by repeating this step until each (positive) training example is covered by at least one rule

Relaxing Completeness and Consistency

- So far we have defined correctness on training data as consistency + completeness
 - we aim for a rule that covers all positive and no negative examples
- This is not always a good idea (→ overfitting)
- Example:

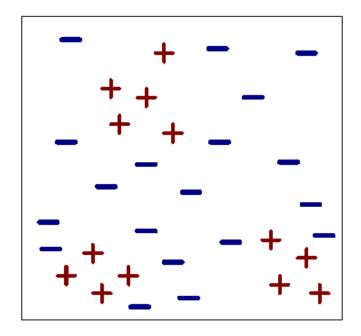
Training set with 200 examples, 100 positive and 100 negative

- Rule Set A consists of 100 complex rules, each covering a single positive example and no negatives
 - → A is complete and consistent on the training set
- Rule Set B consists of a single rule, covering 99 positive and 1 negative example
 - \rightarrow B is incomplete and inconsistent on the training set
- Which one will generalize better to unseen examples?

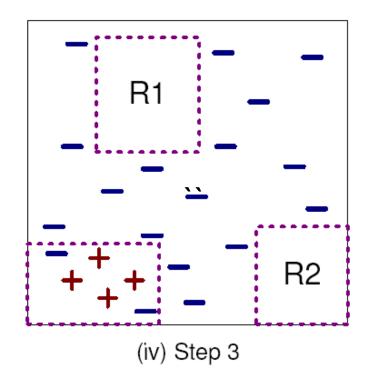
Separate-and-Conquer Rule Learning

- Learn a set of rules, one rule after the other using greedy covering
 - 1. Start with an empty theory T and training set E
 - 2. Learn a single (consistent) rule R from E and add it to T
 - 3. If T is satisfactory (complete), return T
 - 4. Else:
 - Separate: Remove examples explained by R from E
 - Conquer: goto 2.
- One of the oldest family of learning algorithms
- Different learners differ in how they find a single rule
- Completeness and consistency requirements are typically loosened

Separate-and-Conquer Rule Learning

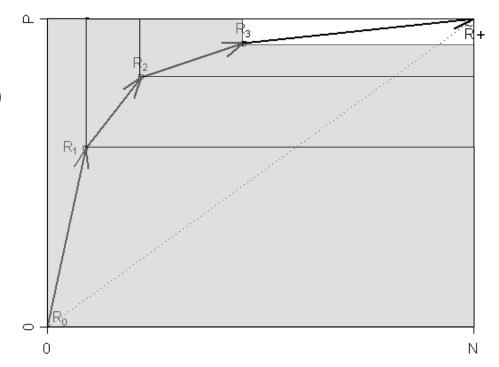


(i) Original Data



Covering Strategy

- Covering or Separate-and-Conquer rule learning learning algorithms learn one rule at a time
 - and then removes the examples covered by this rule
- This corresponds to a path in coverage space:
 - The empty theory R₀ (no rules)
 corresponds to (0,0)
 - Adding one rule never decreases p or n because adding a rule covers more examples (generalization)
 - The universal theory R+ (all examples are positive) corresponds to (N,P)



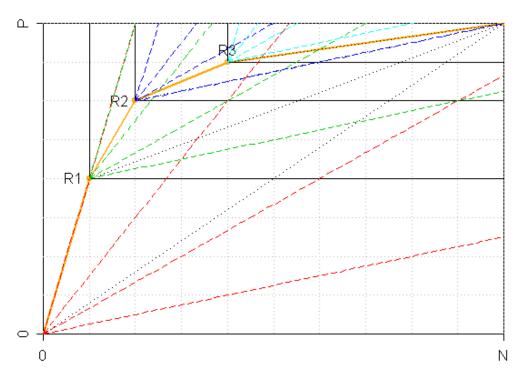
Rule Selection with Precision

Precision tries to pick the steepest continuation of the curve

 tries to maximize the area under this curve (→ AUC: Area Under the ROC Curve)

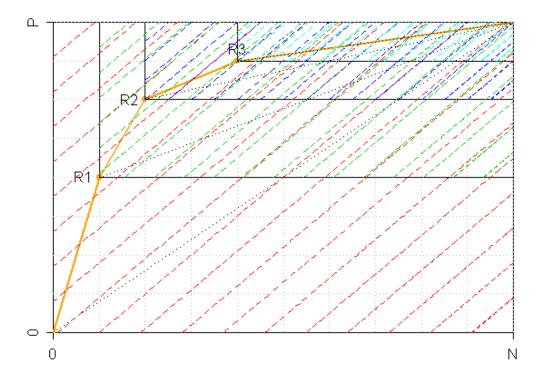
no particular angle of isometrics is preferred, i.e. no preference for a certain

cost model



Rule Selection with Accuracy

- Accuracy assumes the same costs in all subspaces
 - a local optimum in a sub-space is also a global optimum in the entire space



Which Heuristic is Best?

- There have been many proposals for different heuristics
 - and many different justifications for these proposals
 - some measures perform better on some datasets, others on other datasets
- Large-Scale Empirical Comparison:
 - 27 training datasets
 - on which parameters of the heuristics were tuned)
 - 30 independent datasets
 - which were not seen during optimization
 - Goals:
 - see which heuristics perform best
 - determine good parameter values for parametrized functions

Best Parameter Settings

for m-estimate: m = 22.5



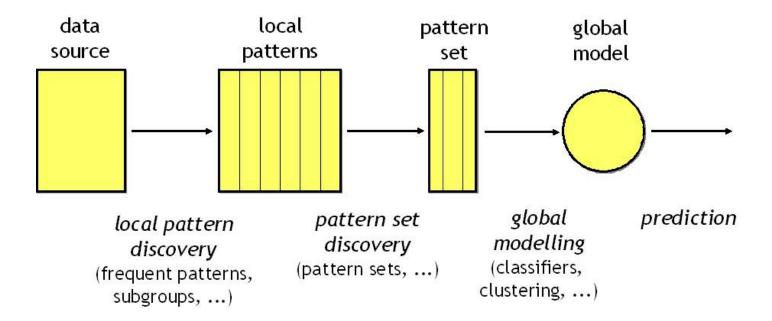
Empirical Comparison of Different Heuristics

	Training	Datasets	Independent Datasets			
Heuristic	Accuracy	# Conditions	Accuracy	#Conditions		
Ripper (JRip)	84,96	16,93	78,97	12,20		
Relative Cost Metric (c =0.342)	85,63	26,11	78,87	25,30		
m-Estimate (m = 22.466)	85,87	48,26	78,67	46,33		
Correlation	83,68	37,48	77,54	47,33		
Laplace	82,28	91,81	76,87	117,00		
Precision	82,36	101,63	76,22	128,37		
Linear Cost Metric (c = 0.437)	82,68	106,30	76,07	122,87		
WRA	82,87	14,22	75,82	12,00		
Accuracy	82,24	85,93	75,65	99,13		

- Ripper is best, but uses pruning (the others don't)
- the optimized parameters for the m-estimate and the relative cost metric perform better than all other heuristics
 - also on the 30 datasets on which they were not optimized
- some heuristics clearly overfit (bad performance with large rules)
- WRA over-generalizes (bad performance with small rules)

LeGo Approach to Rule Learning

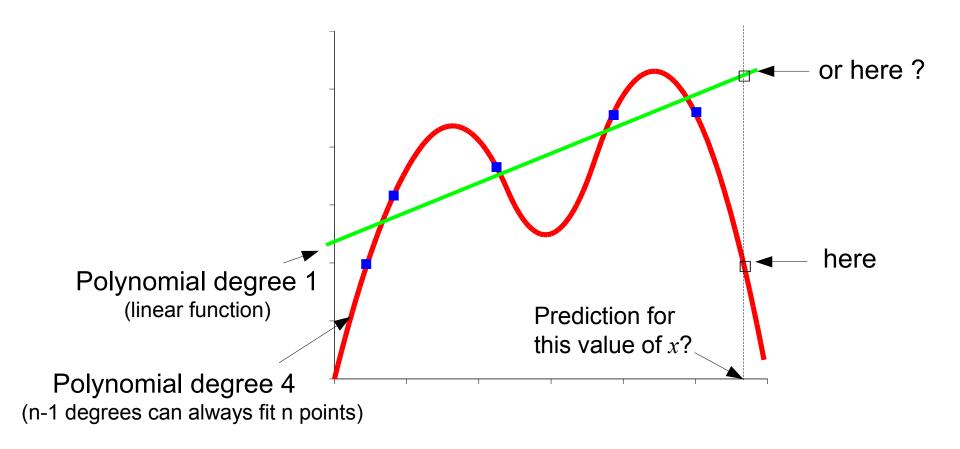
- General framework for aggregating local patterns to global models
 - key idea: use frequently occurring patterns are features



Overfitting

- Overfitting
 - Given
 - a fairly general model class
 - enough degrees of freedom
 - you can always find a model that explains the data
 - even if the data contains error (noise in the data)
 - in rule learning: each example is a rule
- Such concepts do not generalize well!
 - \rightarrow Pruning

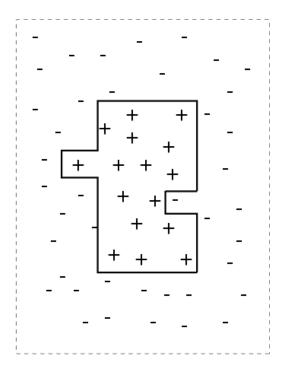
Overfitting - Illustration

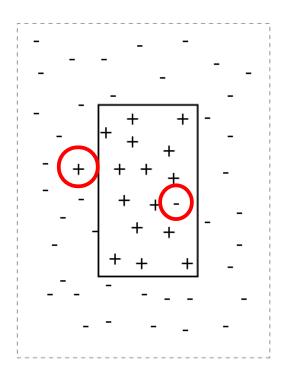


Overfitting Avoidance

- A perfect fit to the data is not always a good idea
 - data could be imprecise
 - e.g., random noise
 - the hypothesis space may be inadequate
 - a perfect fit to the data might not even be possible
 - or it may be possible but with bad generalization properties (e.g., generating one rule for each training example)
- Thus it is often a good idea to avoid a perfect fit of the data
 - fitting polynomials so that
 - not all points are exactly on the curve
 - learning concepts so that
 - not all positive examples have to be covered by the theory
 - some negative examples may be covered by the theory

Overfitting Avoidance





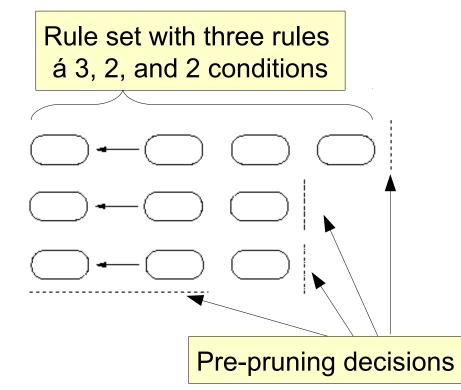
- learning concepts so that
 - not all positive examples have to be covered by the theory
 - some negative examples may be covered by the theory

Complexity of Concepts

- For simpler concepts there is less danger that they are able to overfit the data
 - for a polynomial of degree n one can choose n+1 parameters in order to fit the data points
- → many learning algorithms focus on learning simple concepts
 - a short rule that covers many positive examples (but possibly also a few negatives) is often better than a long rule that covers only a few positive examples
- Pruning: Complex rules will be simplified
 - Pre-Pruning:
 - during learning
 - Post-Pruning:
 - after learning

Pre-Pruning

- keep a theory simple while it is learned
 - decide when to stop adding conditions to a rule (relax consistency constraint)
 - decide when to stop adding rules to a theory (relax completeness constraint)
 - efficient but not accurate



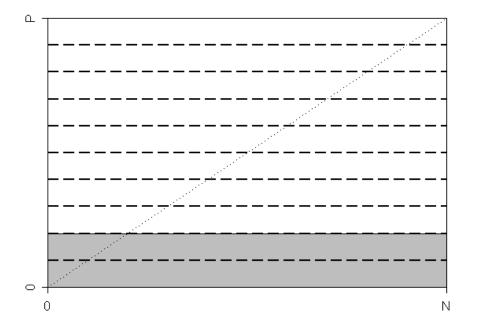
Pre-Pruning Heuristics

- 1. Thresholding a heuristic value
 - require a certain minimum value of the search heuristic
 - e.g.: Precision > 0.8.
- 2. Foil's Minimum Description Length Criterion
 - the length of the theory plus the exceptions (misclassified examples)
 must be shorter than the length of the examples by themselves
 - lengths are measured in bits (information content)
- 3. CN2's Significance Test
 - tests whether the distribution of the examples covered by a rule deviates significantly from the distribution of the examples in the entire training set
 - if not, discard the rule

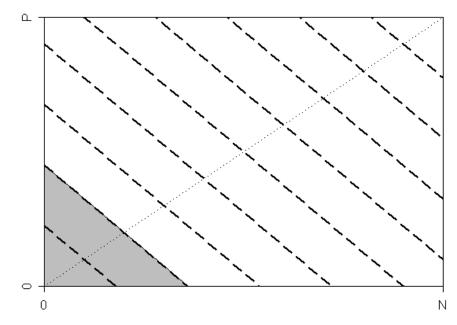
Minimum Coverage Filtering

filter rules that do not cover a minimum number of

positive examples (support)

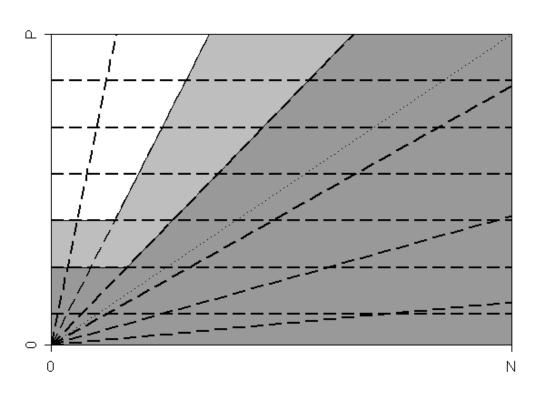


all examples (coverage)



Support/Confidence Filtering

- basic idea: filter rules that
 - cover not enough positive examples $(p < supp_{min})$
 - are not precise enough $(h_{prec} < conf_{min})$
- effects:
 - all but a region around (0,P) is filtered



→ we will return to support/confidence in the context of association rule learning algorithms!

CN2's likelihood ratio statistics

$$h_{LRS} = 2(p \log \frac{p}{e_p} + n \log \frac{n}{e_n})$$

- $e_p = (p+n)\frac{P}{P+N}; \quad e_n = (p+n)\frac{N}{P+N}$
- are the expected number of positive and negative example in the p+n covered examples.

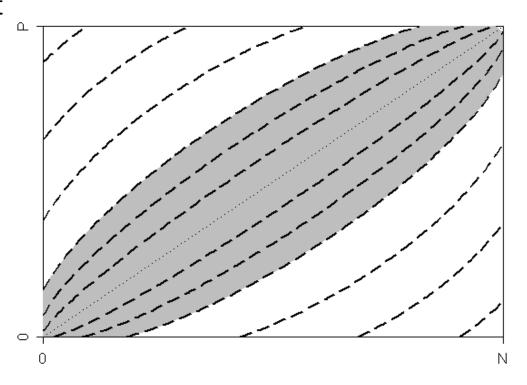
- basic idea: measure significant deviation from prior probability distribution
- effects:
 - non-linear isometrics
 - similar to m-estimate
 - but prefer rules near the edges
 - distributed χ²
 - significance levels 95% (dark) and 99% (light grey)



Correlation

- basic idea: measure correlation coefficient of predictions with target
- effects:
 - non-linear isometrics
 - in comparison to WRA
 - prefers rules near the edges
 - steepness of connection of intersections with edges increases
 - equivalent to χ²
 - grey area = cutoff of 0.3

$$h_{Corr} = \frac{p(N-n) - (P-p)n}{\sqrt{PN(p+n)(P-p+N-n)}}$$



MDL-Pruning in Foil

- based on the Minimum Description Length-Principle (MDL)
 - is it more effective to transmit the rule or the covered examples?
 - compute the information contents of the rule (in bits)
 - compute the information contents of the examples (in bits)
 - if the rule needs more bits than the examples it covers, on can directly transmit the examples → no need to further refine the rule
 - Details → (Quinlan, 1990)
- doesn't work all that well
 - if rules have expections (i.e., are inconsistent), the negative examples must be encoded as well
 - they must be transmitted, otherwise the receiver could not reconstruct which examples do not conform to the rule
 - finding a minimal encoding (in the information-theoretic sense) is practically impossible

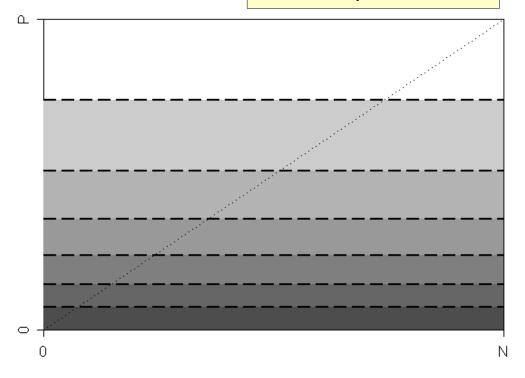
Foil's MDL-based Stopping Criterion

costs for transmitting how many examples we have (can be ignored)

$$h_{MDL} = \log_2(P+N) + \log_2\left(\frac{P+N}{p}\right)$$

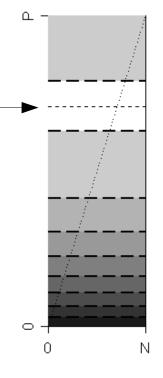
costs for transmitting which of the P+N examples are covered and positive

- basic idea: compare the encoding length of the rule l(r) to the encoding length h_{MDL} of the example.
 - we assume l(r) = c constant
- effects:
 - equivalent to filtering on support
 - because function only depends on p



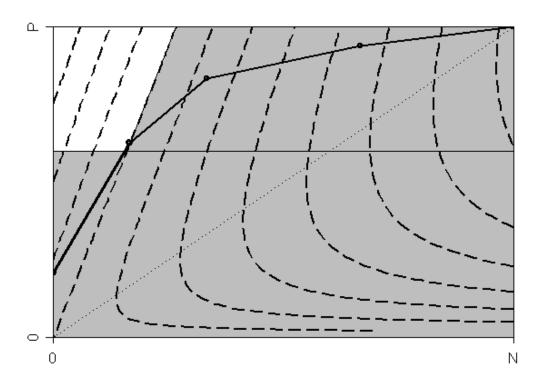
Anomaly of Foil's Stopping criterion

- We have tacitly assumed N > P...
- h_{MDL} assumes its maximum at p = (P+N)/2
 - thus, for P > N, the maximum is not on top!
- there may be rules
 - of equal length
 - covering the same number of negative examples
 - so that the rule covering fewer positive examples is acceptable
 - but the rule covering more positive examples is not!



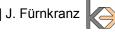
How Foil Works

- → Foil (almost) implements Support/Confidence Filtering (will be explained later → association rules)
 - filtering of rules with no information gain
 - after each refinement step, the region of acceptable rules is adjusted as in precision/ confidence filtering
 - filtering of rules that exceed rule length
 - after each refinement step, the region of acceptable rules adjusted as in support filtering

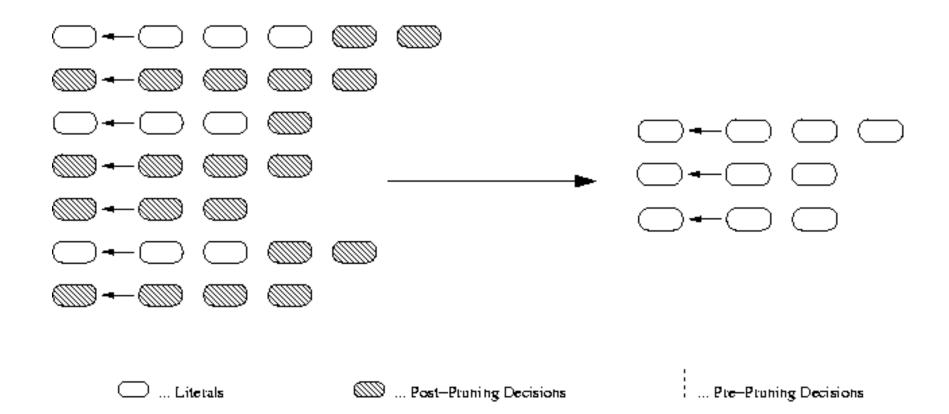


Pre-Pruning Systems

- Foil:
 - Search heuristic: Foil Gain
 - Pruning: MDL-Based
- **CN2**:
 - Search heuristic: Laplace
 - Pruning: Likelihood Ratio
- Fossil:
 - Search heuristic: Correlation
 - Pruning: Threshold



Post Pruning



Post-Pruning: Example

IF	E=primary	AND	S=male	AND	M=single	AND	C=no	THEN	no
IF	E=primary	AND	S=male	AND	M=single	AND	C=yes	THEN	no
IF	E=primary	AND	S=male	AND	M=married	AND	C=no	THEN	yes
IF	E=university	AND	S=female	AND	M=divorced	AND	C=no	THEN	yes
IF	E=university	AND	S=female	AND	M=married	AND	C=yes	THEN	yes
IF	E=secondary	AND	S=male	AND	M=single	AND	C=no	THEN	no
IF	E=university	AND	S=female	AND	M=single	AND	C=no	THEN	yes
IF	E=secondary	AND	S=female	AND	M=divorced	AND	C=no	THEN	yes
IF	E=secondary	AND	S=female	AND	M=single	AND	C=yes	THEN	yes
IF	E=secondary	AND	S=male	AND	M=married	AND	C=yes	THEN	yes
IF	E=primary	AND	S=female	AND	M=married	AND	C=no	THEN	yes
IF	E=secondary	AND	S=male	AND	M=divorced	AND	C=yes	THEN	no
IF	E=university	AND	S=female	AND	M=divorced	AND	C=yes	THEN	no
IF	E=secondary	AND	S=male	AND	M=divorced	AND	C=no	THEN	yes

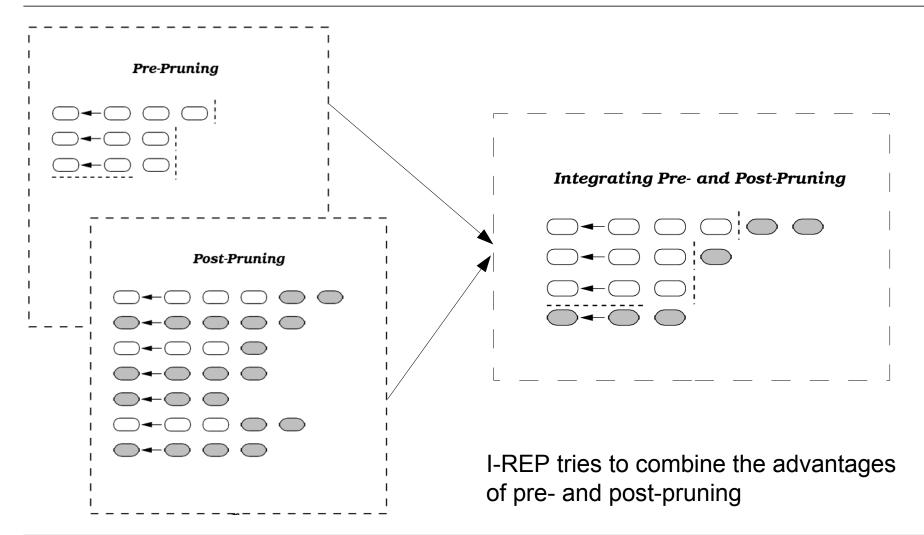
Post-Pruning: Example

IF	S=male	AND	M=single	THEN	no
IF	M=divorced	AND	C=yes	THEN	no
ELS	SE				yes

Reduced Error Pruning

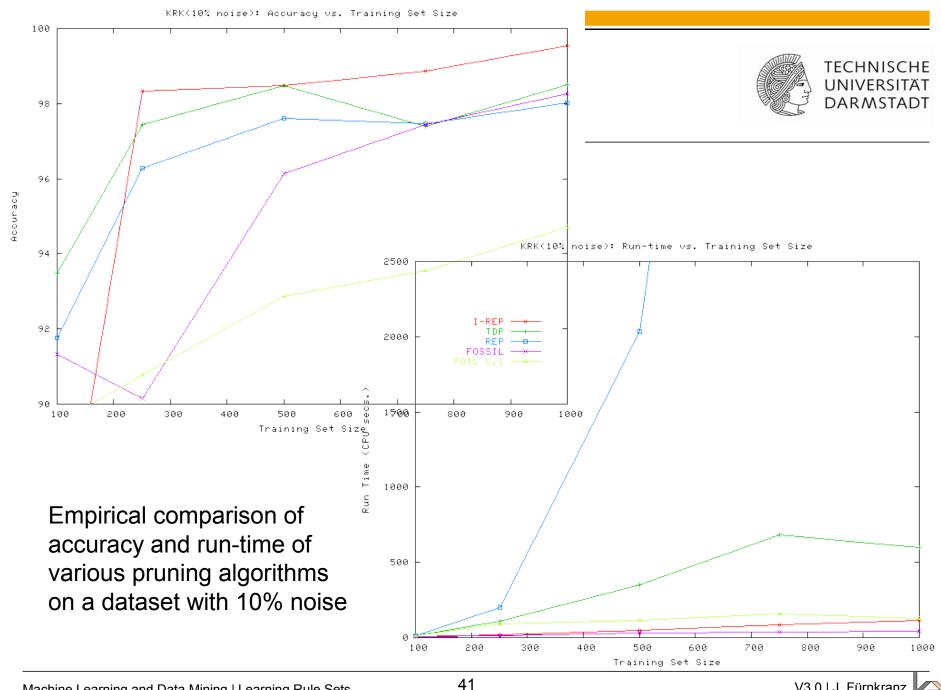
- basic idea
 - optimize the accuracy of a rule set on a separate pruning set
 - 1. split training data into a growing and a pruning set
 - learn a complete and consistent rule set covering all positive examples and no negative examples
 - 3. as long as the error on the pruning set does not increase
 - delete condition or rule that results in the largest reduction of error on the pruning set
 - 4. return the remaining rules
- REP is accurate but not efficient
 - $O(n^4)$

Incremental Reduced Error Pruning



Incremental Reduced Error Pruning

- Prune each rule right after it is learned:
 - 1. split training data into a growing and a pruning set
 - 2. learn a consistent rule covering only positive examples
 - 3. delete conditions as long as the error on the pruning set does not increase
 - 4. if the rule is better than the default rule
 - add the rule to the rule set
 - goto 1.
- More accurate, much more efficient
 - because it does not learn overly complex intermediate concept
 - REP: $O(n^4)$ I-REP: $O(n \log^2 n)$
- Subsequently used in RIPPER rule learner (Cohen, 1995)
 - JRip in Weka



Multi-Class Classification

No.	Education	Marital S.	Sex.	Children?	Car
1	Primary	Single	M	N	Sports
2	Primary	Single	M	Y	Family
3	Primary	Married	M	N	Sports
4	University	Divorced	F	N	Mini
5	University	Married	F	Y	Mini
6	Secondary	Single	M	N	Sports
7	University	Single	F	N	Mini
8	Secondary	Divorced	F	N	Mini
9	Secondary	Single	F	Υ	Mini
10	Secondary	Married	M	Υ	Family
11	Primary	Married	F	N	Mini
12	Secondary	Divorced	M	Υ	Family
13	University	Divorced	F	Υ	Sports
14	Secondary	Divorced	M	N	Sports

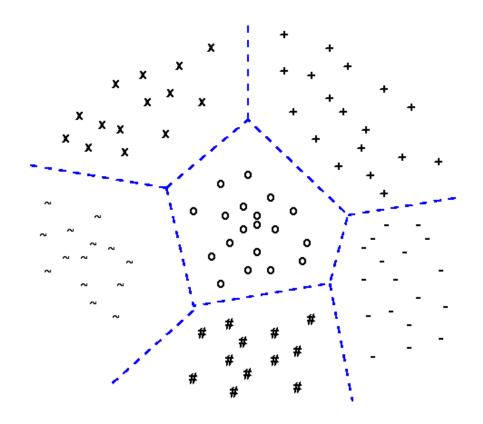
Property of Interest ("class variable")

Multi-class problems

- GOAL: discriminate c classes from each other
- PROBLEM: many learning algorithms are only suitable for binary (2-class) problems
- SOLUTION:

"Class binarization":

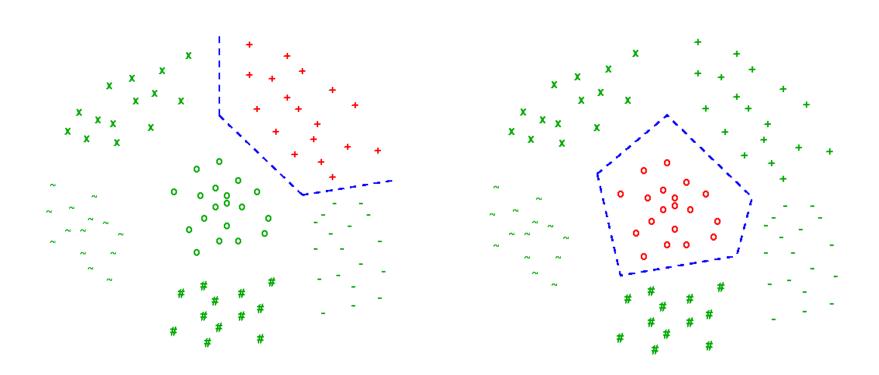
Transform an *c*-class problem into a series of 2-class problems



Class Binarization for Rule Learning

- None
 - class of a rule is defined by the majority of covered examples
 - decision lists, CN2 (Clark & Niblett 1989)
- One-against-all / unordered
 - foreach class c: label its examples positive, all others negative
 - CN2 (Clark & Boswell 1991), Ripper -a unordered
 - Another variant in Ripper sorts the classes first and learns first against rest - remove first - repeat
- Pairwise Classification / one-vs-one
 - Learn one rule-set for each pair of classes
- Error Correcting Output Codes (Dietterich & Bakiri, 1995)
 - generalized by (Allwein, Schapire, & Singer, JMLR 2000)
 - → Ensemble Methods

One-against-all binarization



Treat each class as a separate concept:

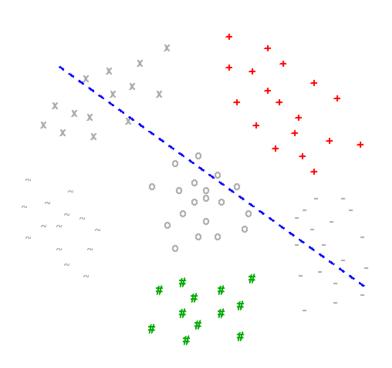
- c binary problems, one for each class
- label examples of one class positive, all others negative

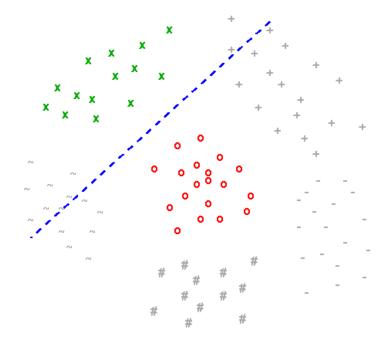
Prediction

- It can happen that multiple rules fire for a example
 - no problem for concept learning (all rules say +)
 - but problematic for multi-class learning
 - because each rule may predict a different class
 - Typical solution:
 - use rule with the highest (Laplace) precision for prediction
 - more complex approaches are possible: e.g., voting
- It can happen that no rule fires on a example
 - no problem for concept learning (the example is then -)
 - but problematic for multi-class learning
 - because it remains unclear which class to select
 - Typical solution: predict the largest class
 - more complex approaches:
 - e.g., rule stretching: find the most similar rule to an example
 - → similarity-based learning methods

Pairwise Classification

- c(c-1)/2 problems
- each class against each other class





- smaller training sets
- simpler decision boundaries
- larger margins

Prediction

Voting:

- as in a sports tournament:
 - each class is a player
 - each player plays each other player, i.e., for each pair of classes we get a prediction which class "wins"
 - the winner receives a point
 - the class with the most points is predicted
 - tie breaks, e.g., in favor of larger classes

Weighted voting:

- the vote of each theory is proportional to its own estimate of its correctness
- e.g., proportional to proportion of examples of the predicted class covered by the rule that makes the prediction

Accuracy

one-vs-all	pairwise
------------	----------

	Ri	pper	V		
dataset	unord.	ordered	\mathbb{R}^3	ratio	<
abalone	81.03	82.18	72.99	0.888	++
covertype	35.37	38.50	33.20	0.862	++
letter	15.22	15.75	7.85	0.498	++
sat	14.25	17.05	11.15	0.654	++
shuttle	0.03	0.06	0.02	0.375	=
vowel	64.94	53.25	53.46	1.004	=
car	5.79	12.15	2.26	0.186	++
glass	35.51	34.58	25.70	0.743	++
image	4.15	4.29	3.46	0.808	+
lr spectrometer	64.22	61.39	53.11	0.865	++
optical	7.79	9.48	3.74	0.394	++
page-blocks	2.85	3.38	2.76	0.816	++
solar flares (c)	15.91	15.91	15.77	0.991	=
solar flares (m)	4.90	5.47	5.04	0.921	=
soybean	8.79	8.79	6.30	0.717	++
thyroid (hyper)	1.25	1.49	1.11	0.749	+
thyroid (hypo)	0.64	0.56	0.53	0.955	=
thyroid (repl.)	1.17	0.98	1.01	1.026	=
vehicle	28.25	30.38	29.08	0.957	=
yeast	44.00	42.39	41.78	0.986	=
average	21.80	21.90	18.52	0.770	

- error rates on 20 datasets with 4 or more classes
 - 10 significantly better (p > 0.99, McNemar)
 - 2 significantly better (p > 0.95)
 - 8 equal
 - never (significantly) worse

Advantages of the Pairwise Approach

- Accuracy
 - better than one-against-all (also in independent studies)
 - improvement appr. on par with 10 boosting iterations
- Example Size Reduction
 - subtasks might fit into memory where entire task does not
- Stability
 - simpler boundaries/concepts with possibly larger margins
- Understandability
 - similar to pairwise ranking as recommended by Pyle (1999)

- Parallelizable
 - each task is independent of all other tasks
- Modularity
 - train binary classifiers once
 - can be used with different combiners
- Ranking ability
 - provides a ranking of classes for free
- Complexity?
 - we have to learn a quadratic number of theories...
 - but with fewer examples

Training Complexity of PC

Lemma: The total number of training examples for all binary classifiers in a pairwise classification ensemble is $(c-1)\cdot n$

Proof:

• each of the n training examples occurs in all binary tasks where its class is paired with one of the other c-1 classes

Theorem: For learning algorithms with at least linear complexity, pairwise classification is more efficient than one-against-all.

Proof Sketch:

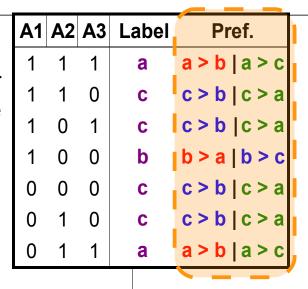
- one-against-all binarization needs a total of $c \cdot n$ examples
- fewer training examples are distributed over more classifiers
- more small training sets are faster to train than few large training sets
- for complexity $f(n) = n^o$ (o > 1): $o > 1 \rightarrow \sum n_i^o < (\sum n_i)^o$

Preference Data

No.	Education	Marital S.	Sex.	Children?	Car Preferences
1	Primary	Single	М	N	Sports > Family
2	Primary	Single	М	Υ	Family > Sports, Family > Mini
3	Primary	Married	М	N	Sports > Family > Mini
4	University	Divorced	F	N	Mini > Family
5	University	Married	F	Y	Mini > Sports
6	Secondary	Single	М	N	Sports > Mini > Family
7	University	Single	F	N	Mini > Family, Mini > Sports
8	Secondary	Divorced	F	N	Mini > Sports
9	Secondary	Single	F	Y	Mini > Sports, Family > Sports
10	Secondary	Married	М	Y	Family > Mini
11	Primary	Married	F	N	Mini > Family
12	Secondary	Divorced	М	Y	Family > Sports > Mini
13	University	Divorced	F	Υ	Sports > Mini, Family > Mini
14	Secondary	Divorced	М	N	Sports > Mini

Class Information encodes Preferences

dataset with class label for each example



a > b means: for this example label a is preferred over label b

example with unknown class label

A 1	A2	A3	Label
0	0	1	?

Label Preference Learner

A 1	A2	A3	Label
0	0	1	b

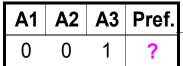
General Label Preference Learning Problem

dataset with preferences for each example

A1	A2	A3	Pref.
1	1	1	a > b b > c
1	1	0	a > b c > b
1	0	1	b > a
1	0	0	b > a a > c c > b
0	0	0	c > a
0	1	0	c > b c > a
0	1	1	a > c

Each example may have an arbitrary number of preferences

example with unknown preferences



Label Preference Learner

We typically predict a complete ranking (a total order)

A1	A2	A3	Pref.
0	0	1	b > a > 0

Label Ranking

- Preference learning scenario in which
 - contexts are characterized by features
 - no information about the items is given except a unique name (a label)

GIVEN:

a set of labels:

a set of contexts:

• for each training context e_k :

a set of preferences

$$L = \{ \lambda_i | i = 1 \dots c \}$$

$$E = \{e_k | k = 1 \dots n\}$$

$$P_k = \{\lambda_i \succ_k \lambda_j\} \subseteq L \times L$$

FIND:

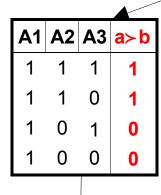
 a label ranking function that orders the labels for any given context

Pairwise Preference Learning

A1	A2	A3	Pref.	A1	A2	A3	Pref.
1	1	1	$a > b \mid b > c$	0	0	0	c≻ a
1	1	0	$a > b \mid c > b$	0	1	0	c ≻ b c ≻ a
1	0	1	b≻ a	0	1	1	a≻c
1	0	0	$b > a \mid a > c \mid c > b$				

dataset with preferences for each example

one dataset for each preference



A 1	A2	А3	b≻c
1	1	1	1
1	1	0	0
1	0	0	0
0	1	0	0
U	<u> </u>	U	

A 1	A2	A3	a≻c
1	0	0	1
0	0	0	0
0	1	0	0
0	1	1	1

A 1	A2	A3	Pref.	M_{ab}	M_{bc}		 	
0	0	1	?	— — — —				
				b ≻ a	I	b ≻ c	1	a ≻ c

A 1	A2	A 3	Pref.
0	0	1	b≻a≻ c
			A

Regression

No	Education	Marital S.	Sex.	Children?	Income
1	Primary	Single	М	N	20,000
2	Primary	Single	M	Υ	23,000
3	Primary	Married	М	N	25,000
4	University	Divorced	F	N	50,000
5	University	Married	F	Y	60,000
6	Secondary	Single	M	N	45,000
7	University	Single	F	N	80,000
8	Secondary	Divorced	F	N	55,000
9	Secondary	Single	F	Y	30,000
10	Secondary	Married	M	Υ	75,000
11	Primary	Married	F	N	35,000
12	Secondary	Divorced	M	Υ	70,000
13	University	Divorced	F	Υ	65,000
14	Secondary	Divorced	M	N	38,000

Numeric Target Variable

Rule-Based Regression

- Regression trees are quite successful
- Work on directly learning regression rules was not yet able to match that performance
 - Main Problem: How to define a good heuristic?
- Transformation approach:
 - Reduce regression to classification
 - use the idea of ε-insensitive loss functions proposed for SVMS:
 - all examples in an ε-environment of the value predicted in the rule head are considered to be positive, all others negative
 - rules can then be learned using regular heuristics for classification rules

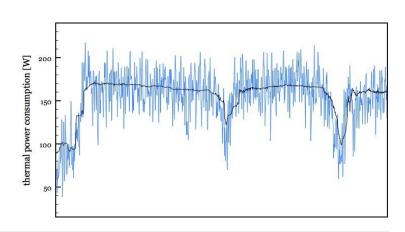
$$\begin{array}{c} \text{negative} \\ |y - y_{\mathbf{r}}| > t_{\mathbf{r}} \end{array}$$

$$|y_{\mathbf{r}}| = 0 - \begin{cases} \text{positive} \\ |y - y_{\mathbf{r}}| \le t_{\mathbf{r}} \end{cases}$$

$$\begin{array}{l} \text{negative} \\ |y - y_{\mathbf{r}}| > t_{\mathbf{r}} \end{array}$$

Application Example: Venus Express Power Consumption

- Goal
 - Learn a model of the energy consumption of the heating system of the Venus express
- Approach
 - Information about the consumption is available in hindsight
 - can be used to train a model
 - Best results obtained with ensembles of regression trees
 - local differences cannot be modeled
 - but trends can be captured well
- Partner
 - ESA / ESOC
 - University of Cordoba



Summary

- Rules can be learned via top-down hill-climbing
 - add one condition at a time until the rule covers no more negative exs.
- Heuristics are needed for guiding the search
 - can be visualize through isometrics in coverage space
- Rule Sets can be learned one rule at a time
 - using the covering or separate-and conquer strategy
- Overfitting is a serious problem for all machine learning algorithms
 - too close a fit to the training data may result in bad generalizations
- Pruning can be used to fight overfitting
 - Pre-pruning and post-pruning can be efficiently integrated
- Multi-class problems can be addressed by multiple rule sets
 - one-against-all classification or pairwise classification