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Learning Rule Sets

 many datasets cannot be solved with a single rule

 not even the simple weather dataset

 they need a rule set for formulating a target theory

 finding a computable generality relation for rule sets is not trivial

 adding a condition to a rule specializes the theory

 adding a new rule to a theory generalizes the theory

 practical algorithms use different approaches

 covering or separate-and-conquer algorithms

 based on heuristic search
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A Sample Database

 No. Education Marital S. Sex. Children? Approved?

1 Primary Single M N -

2 Primary Single M Y -

3 Primary Married M N +

4 University Divorced F N +

5 University Married F Y +

6 Secondary Single M N -

7 University Single F N +

8 Secondary Divorced F N +

9 Secondary Single F Y +

10 Secondary Married M Y +

11 Primary Married F N +

12 Secondary Divorced M Y -

13 University Divorced F Y -

14 Secondary Divorced M N +

Property of Interest
(“class variable”)
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A Learned Rule Set

IF E=primary    AND S=male   AND M=married  AND C=no    THEN yes 
IF E=university AND S=female AND M=divorced AND C=no    THEN yes 
IF E=university AND S=female AND M=married  AND C=yes   THEN yes 
IF E=university AND S=female AND M=single   AND C=no    THEN yes 
IF E=secondary  AND S=female AND M=divorced AND C=no    THEN yes 
IF E=secondary  AND S=female AND M=single   AND C=yes   THEN yes 
IF E=secondary  AND S=male   AND M=married  AND C=yes   THEN yes 
IF E=primary    AND S=female AND M=married  AND C=no    THEN yes 
IF E=secondary  AND S=male   AND M=divorced AND C=no    THEN yes
ELSE no

IF E=primary    AND S=male   AND M=married  AND C=no    THEN yes 
IF E=university AND S=female AND M=divorced AND C=no    THEN yes 
IF E=university AND S=female AND M=married  AND C=yes   THEN yes 
IF E=university AND S=female AND M=single   AND C=no    THEN yes 
IF E=secondary  AND S=female AND M=divorced AND C=no    THEN yes 
IF E=secondary  AND S=female AND M=single   AND C=yes   THEN yes 
IF E=secondary  AND S=male   AND M=married  AND C=yes   THEN yes 
IF E=primary    AND S=female AND M=married  AND C=no    THEN yes 
IF E=secondary  AND S=male   AND M=divorced AND C=no    THEN yes
ELSE no

 The solution is 
 a set of rules 
 that is complete and consistent on the training examples

→ it must be part of the version space
 but it does not generalize to new examples!
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The Need for a Bias

 rule sets can be generalized by 
 generalizing an existing rule (as in (Batch-)Find-S)
 introducing  a new rule (this is new)

 a minimal generalization could be
 introduce a new rule that covers only the new example

 Thus:
 The solution on the previous slide will be found as a result of the FindS 

algorithm
 FindG (or Batch-FindG) are less likely to find such a bad solution 

because they prefer general theories

 But in principle this solution is part of the hypothesis space and 
also of the version space
⇒ we need a search bias to prevent finding this solution!
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A Better Solution

IF Marital = married                     THEN  yes

IF Marital = single   AND Sex = female   THEN yes

IF Marital = divorced AND Children = no  THEN yes

ELSE no

IF Marital = married                     THEN  yes

IF Marital = single   AND Sex = female   THEN yes

IF Marital = divorced AND Children = no  THEN yes

ELSE no
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Recap: Subgroup Discovery

 Abstract algorithm for learning a single rule:

1. Start with an empty theory T and training set E

2. Learn a single (consistent) rule R from E and add it to T  

3. return T

 Problem:
 the basic assumption is that the found rules are complete, i.e., they 

cover all positive examples
 What if they don't?

 Simple solution:
 If we have a rule that covers part of the positive examples:
 add some more rules that cover the remaining examples
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Key idea of Covering algorithms

Properties of Subgroup Discovery algorithms:
 Consistency can always be maximized 
 a rule that covers no negative examples can always be found

 Completeness can not necessarily be ensured
 Many concepts can only be formulated with multiple rules

Learning strategy:
 Try to learn a rule that is as consistent as possible
 Fix completeness by repeating this step until each (positive) 

training example is covered by at least one rule



V3.0 | J. FürnkranzMachine Learning and Data Mining | Learning Rule Sets 9

Relaxing Completeness and Consistency

 So far we have defined correctness on training data as 
consistency + completeness
 → we aim for a rule that covers all positive and no negative examples

 This is not always a good idea (→ overfitting)

 Example:

Training set with 200 examples, 100 positive and 100 negative
 Rule Set A consists of 100 complex rules, each covering a single 

positive example and no negatives

→ A is complete and consistent on the training set
 Rule Set B consists of a single rule, covering 99 positive and 1 

negative example

→ B is incomplete and inconsistent on the training set

 Which one will generalize better to unseen examples?
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Separate-and-Conquer 
Rule Learning

 Learn a set of rules, one rule after the other using greedy covering

1. Start with an empty theory T and training set E
2. Learn a single (consistent) rule R from E and add it to T  
3. If T is satisfactory (complete), return T
4. Else:

Separate: Remove examples explained by R from E
Conquer:  goto 2.

 One of the oldest family of learning algorithms
 Different learners differ in how they find a single rule 
 Completeness and consistency requirements are typically 

loosened
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Separate-and-Conquer Rule Learning

``

Quelle für Grafiken: http://www.cl.uni-heidelberg.de/kurs/ws03/einfki/KI-2004-01-13.pdf
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Covering Strategy

 Covering or Separate-and-Conquer rule learning learning 
algorithms learn one rule at a time
 and then removes the examples covered by this rule

 This corresponds to a path
in coverage space:
 The empty theory R0 (no rules) 

corresponds to (0,0)
 Adding one rule never 

decreases p or n because 
adding a rule covers more 
examples (generalization)

 The universal theory R+ 
(all examples are positive) 
corresponds to (N,P)

+
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Rule Selection with Precision 

 Precision tries to pick the steepest continuation of the curve 
 tries to maximize the area under this curve 

(→ AUC: Area Under the ROC Curve)
 no particular angle of isometrics is preferred, i.e. no preference for a certain 

cost model
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Rule Selection with Accuracy

 Accuracy assumes the same costs in all subspaces
 a local optimum in a sub-space is also a global optimum in the entire space
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Which Heuristic is Best?

 There have been many proposals for different heuristics
 and many different justifications for these proposals
 some measures perform better on some datasets, others on other 

datasets

 Large-Scale Empirical Comparison:
 27 training datasets 
 on which parameters of the heuristics were tuned)

 30 independent datasets 
 which were not seen during optimization

 Goals:
 see which heuristics perform best
 determine good parameter values for parametrized functions
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Best Parameter Settings

       for m-estimate: m = 22.5

   for relative cost metric: c = 0.342
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Empirical Comparison of Different Heuristics

Training

84,96 16,93 78,97 12,20
85,63 26,11 78,87 25,30
85,87 48,26 78,67 46,33
83,68 37,48 77,54 47,33

Laplace 82,28 91,81 76,87 117,00
82,36 101,63 76,22 128,37
82,68 106,30 76,07 122,87

WRA 82,87 14,22 75,82 12,00
82,24 85,93 75,65 99,13

 Datasets Independent Datasets
Heuristic Accuracy # Conditions Accuracy  #Conditions
Ripper (JRip)
Relative Cost Metric (c =0.342)
m-Estimate (m = 22.466)
Correlation

Precision
Linear Cost Metric (c = 0.437)

Accuracy

 Ripper is best, but uses pruning (the others don't)
 the optimized parameters for the m-estimate and the relative cost 

metric perform better than all other heuristics
 also on the 30 datasets on which they were not optimized

 some heuristics clearly overfit (bad performance with large rules)
 WRA over-generalizes (bad performance with small rules)



V3.0 | J. FürnkranzMachine Learning and Data Mining | Learning Rule Sets 18

LeGo Approach 
to Rule Learning

 General framework for aggregating local patterns to global models
 key idea: use frequently occurring patterns are features
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Overfitting 

 Overfitting
 Given 
 a fairly general model class 
 enough degrees of freedom

 you can always find a model that explains the data
 even if the data contains error (noise in the data)
 in rule learning: each example is a rule

 Such concepts do not generalize well!
→ Pruning
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 

 

 
 

 

Overfitting - Illustration

Prediction for 
this value of x?

Polynomial degree 1
(linear function)

    Polynomial degree 4
(n-1 degrees can always fit n points)

□ here

□ or here ?
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Overfitting Avoidance

 A perfect fit to the data is not always a good idea
 data could be imprecise
 e.g., random noise

 the hypothesis space may be inadequate
 a perfect fit to the data might not even be possible
 or it may be possible but with bad generalization properties

(e.g., generating one rule for each training example)

 Thus it is often a good idea to avoid a perfect fit of the data
 fitting polynomials so that 
 not all points are exactly on the curve

 learning concepts so that 
 not all positive examples have to be covered by the theory
 some negative examples may be covered by the theory
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Overfitting Avoidance

 learning concepts so that 
 not all positive examples have to be covered by the theory
 some negative examples may be covered by the theory
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Complexity of Concepts

 For simpler concepts there is less danger that they are able to 
overfit the data
 for a polynomial of degree n one can choose n+1 parameters in order 

to fit the data points

→ many learning algorithms focus on learning simple concepts
 a short rule that covers many positive examples (but possibly also a 

few negatives) is often better than a long rule that covers only a few 
positive examples

 Pruning: Complex rules will be simplified
 Pre-Pruning:
 during learning

 Post-Pruning:
 after learning
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Pre-Pruning 

 keep a theory simple while it 
is learned
 decide when to stop adding 

conditions to a rule 
(relax consistency 
constraint)

 decide when to stop adding 
rules to a theory
(relax completeness 
constraint)

 efficient but not accurate

Rule set with three rules 
á 3, 2, and 2 conditions

Pre-pruning decisions
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Pre-Pruning Heuristics

1. Thresholding a heuristic value
 require a certain minimum value of the search heuristic
 e.g.: Precision > 0.8.

2. Foil's Minimum Description Length Criterion
 the length of the theory plus the exceptions (misclassified examples) 

must be shorter than the length of the examples by themselves
 lengths are measured in bits (information content)

3. CN2's Significance Test
 tests whether the distribution of the examples covered by a rule 

deviates significantly from the distribution of the examples in the entire 
training set

 if not, discard the rule
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Minimum Coverage Filtering

         positive examples (support)              all examples (coverage)

filter rules that do not cover a minimum number of  
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Support/Confidence Filtering

 basic idea:
filter rules that
 cover not enough positive 

examples (p < suppmin)

 are not precise enough 
(hprec < confmin)

 effects:
 all but a region around (0,P) 

is filtered

→  we will return to support/confidence in the context of      
association rule learning algorithms! 
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CN2's likelihood ratio statistics

 basic idea:
measure significant deviation 
from prior probability distribution

 effects:
 non-linear isometrics
 similar to m-estimate
 but prefer rules near the 

edges
 distributed χ2

 significance levels 95% (dark) 
and 99% (light grey)

hLRS=2 p log
p

e p

n log
n
en


e p= pn

P
PN

; en= pn
N

PN

are the expected number of 
positive and negative example
in the p+n covered examples.
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Correlation

 basic idea:
measure correlation coefficient
of predictions with target

 effects:
 non-linear isometrics
 in comparison to WRA
 prefers rules near the edges
 steepness of connection of 

intersections with edges 
increases

 equivalent to χ2

 grey area = cutoff of 0.3

hCorr=
p N −n−P− pn

PN  pnP− pN −n
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MDL-Pruning in Foil

 based on the Minimum Description Length-Principle (MDL)
 is it more effective to transmit the rule or the covered examples?
 compute the information contents of the rule (in bits)
 compute the information contents of the examples (in bits)
 if the rule needs more bits than the examples it covers, on can directly 

transmit the examples → no need to further refine the rule

 Details → (Quinlan, 1990)

 doesn't work all that well
 if rules have expections (i.e., are inconsistent), the negative examples 

must be encoded as well
 they must be transmitted, otherwise the receiver could not reconstruct which 

examples do not conform to the rule

 finding a minimal encoding (in the information-theoretic sense) is 
practically impossible
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Foil's MDL-based Stopping Criterion

 basic idea:
compare the encoding length 
of the rule l(r) to the encoding 
length hMDL of the example.
 we assume l(r) = c constant

 effects:
 equivalent to filtering on 

support
 because function only 

depends on p

hMDL=log2 PN log2 PN
p  costs for transmitting

which of the P+N
examples are covered

and positive

costs for transmitting how 
many examples we have 

(can be ignored)



V3.0 | J. FürnkranzMachine Learning and Data Mining | Learning Rule Sets 32

Anomaly of Foil's Stopping criterion

 We have tacitly assumed N > P...

 hMDL assumes its maximum at  p = (P+N)/2
 thus, for P > N, the maximum is not on top!

 there may be rules 
 of equal length
 covering the same number of negative examples

 so that the rule covering fewer positive examples is 
acceptable

 but the rule covering more positive examples is not!
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How Foil Works

 filtering of rules with no 
information gain
 after each refinement step,

the region of acceptable rules
is adjusted as in precision/
confidence filtering

 filtering of rules that exceed the 
rule length
 after each refinement step, 

the region of acceptable rules is 
adjusted as in support filtering

→ Foil (almost) implements Support/Confidence Filtering
      (will be explained later → association rules)
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Pre-Pruning Systems

 Foil:
 Search heuristic: Foil Gain
 Pruning: MDL-Based

 CN2:
 Search heuristic: Laplace
 Pruning: Likelihood Ratio

 Fossil:
 Search heuristic: Correlation
 Pruning: Threshold
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Post Pruning
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Post-Pruning: Example

IF E=primary    AND S=male   AND M=single   AND C=no  THEN no
IF E=primary    AND S=male   AND M=single   AND C=yes THEN no 
IF E=primary    AND S=male   AND M=married  AND C=no  THEN yes 
IF E=university AND S=female AND M=divorced AND C=no  THEN yes 
IF E=university AND S=female AND M=married  AND C=yes THEN yes 
IF E=secondary  AND S=male   AND M=single   AND C=no  THEN no 
IF E=university AND S=female AND M=single   AND C=no  THEN yes 
IF E=secondary  AND S=female AND M=divorced AND C=no  THEN yes 
IF E=secondary  AND S=female AND M=single   AND C=yes THEN yes 
IF E=secondary  AND S=male   AND M=married  AND C=yes THEN yes 
IF E=primary    AND S=female AND M=married  AND C=no  THEN yes 
IF E=secondary  AND S=male   AND M=divorced AND C=yes THEN no 
IF E=university AND S=female AND M=divorced AND C=yes THEN no 
IF E=secondary  AND S=male   AND M=divorced AND C=no  THEN yes

IF E=primary    AND S=male   AND M=single   AND C=no  THEN no
IF E=primary    AND S=male   AND M=single   AND C=yes THEN no 
IF E=primary    AND S=male   AND M=married  AND C=no  THEN yes 
IF E=university AND S=female AND M=divorced AND C=no  THEN yes 
IF E=university AND S=female AND M=married  AND C=yes THEN yes 
IF E=secondary  AND S=male   AND M=single   AND C=no  THEN no 
IF E=university AND S=female AND M=single   AND C=no  THEN yes 
IF E=secondary  AND S=female AND M=divorced AND C=no  THEN yes 
IF E=secondary  AND S=female AND M=single   AND C=yes THEN yes 
IF E=secondary  AND S=male   AND M=married  AND C=yes THEN yes 
IF E=primary    AND S=female AND M=married  AND C=no  THEN yes 
IF E=secondary  AND S=male   AND M=divorced AND C=yes THEN no 
IF E=university AND S=female AND M=divorced AND C=yes THEN no 
IF E=secondary  AND S=male   AND M=divorced AND C=no  THEN yes
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IF S=male AND M=single THEN no

IF M=divorced AND C=yes THEN no 

ELSE  yes

IF S=male AND M=single THEN no

IF M=divorced AND C=yes THEN no 

ELSE  yes

Post-Pruning: Example
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Reduced Error Pruning 

 basic idea
 optimize the accuracy of a rule set on a separate pruning set

1. split training data into a growing and a pruning set

2. learn a complete and consistent rule set covering all positive examples 
and no negative examples

3. as long as the error on the pruning set does not increase
 delete condition or rule that results in the largest reduction of error on the 

pruning set

4. return the remaining rules

 REP is accurate but not efficient 
 O(n4)
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Incremental Reduced Error Pruning

I-REP tries to combine the advantages
of pre- and post-pruning
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Incremental Reduced Error Pruning

 Prune each rule right after it is learned:

1. split training data into a growing and a pruning set

2. learn a consistent rule covering only positive examples

3. delete conditions as long as the error on the pruning set does not 
increase

4. if the rule is better than the default rule
 add the rule to the rule set
 goto 1.

 More accurate, much more efficient
 because it does not learn overly complex intermediate concept
 REP: O(n4)         I-REP: O(n log2n)

 Subsequently used in RIPPER rule learner (Cohen, 1995)
 JRip in Weka
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Empirical comparison of 
accuracy and run-time of 
various pruning algorithms 
on a dataset with 10% noise
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Multi-Class Classification

 No. Education Marital S. Sex. Children? Car

1 Primary Single M N Sports

2 Primary Single M Y Family

3 Primary Married M N Sports

4 University Divorced F N Mini

5 University Married F Y Mini

6 Secondary Single M N Sports

7 University Single F N Mini

8 Secondary Divorced F N Mini

9 Secondary Single F Y Mini

10 Secondary Married M Y Family

11 Primary Married F N Mini

12 Secondary Divorced M Y Family

13 University Divorced F Y Sports

14 Secondary Divorced M N Sports

Property of Interest
(“class variable”)
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Multi-class problems 

 GOAL: discriminate c 
classes from each other

 PROBLEM: many learning 
algorithms are only suitable 
for binary (2-class) problems

 SOLUTION: 
"Class binarization": 
Transform an c-class 
problem into a series of 2-
class problems
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Class Binarization for Rule Learning

 None
 class of a rule is defined by the majority of covered examples
 decision lists, CN2 (Clark & Niblett 1989)

 One-against-all / unordered
 foreach class c: label its examples positive, all others negative
 CN2 (Clark & Boswell 1991), Ripper -a unordered 
 Another variant in Ripper sorts the classes first and learns first against 

rest - remove first - repeat

 Pairwise Classification / one-vs-one
 Learn one rule-set for each pair of classes 

 Error Correcting Output Codes (Dietterich & Bakiri, 1995)
 generalized by (Allwein, Schapire, & Singer, JMLR 2000)

→ Ensemble Methods
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One-against-all binarization

Treat each class as a separate concept:
 c binary problems, one for each class
 label examples of one class positive, all others negative
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Prediction

 It can happen that multiple rules fire for a example
 no problem for concept learning (all rules say +)
 but problematic for multi-class learning
 because each rule may predict a different class

 Typical solution: 
 use rule with the highest (Laplace) precision for prediction

 more complex approaches are possible: e.g., voting

 It can happen that no rule fires on a example
 no problem for concept learning (the example is then -)
 but problematic for multi-class learning
 because it remains unclear which class to select

 Typical solution: predict the largest class
 more complex approaches: 
 e.g., rule stretching: find the most similar rule to an example

→ similarity-based learning methods



V3.0 | J. FürnkranzMachine Learning and Data Mining | Learning Rule Sets 47

Pairwise Classification

 c(c-1)/2 problems
 each class against each other class

✔ smaller training sets
✔ simpler decision 

boundaries
✔ larger margins
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Prediction

 Voting: 
 as in a sports tournament:
 each class is a player
 each player plays each other player, i.e., for each pair of classes we get a 

prediction which class „wins“
 the winner receives a point
 the class with the most points is predicted
 tie breaks, e.g., in favor of larger classes

 Weighted voting:
 the vote of each theory is proportional to its own estimate of its 

correctness 
 e.g., proportional to proportion of examples of the predicted class 

covered by the rule that makes the prediction
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Accuracy

 error rates on 20 
datasets with 4 or 
more classes
 10 significantly better 

(p > 0.99, McNemar)
 2 significantly better 

(p > 0.95)
 8 equal
 never (significantly) 

worse

pairwiseone-vs-all
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Advantages of the Pairwise Approach

 Accuracy
 better than one-against-all

(also in independent studies)
 improvement appr. on par with 

10 boosting iterations

 Example Size Reduction
 subtasks might fit into memory 

where entire task does not

 Stability
 simpler boundaries/concepts 

with possibly larger margins

 Understandability
 similar to pairwise ranking as 

recommended by Pyle (1999)

 Parallelizable
 each task is independent of all 

other tasks

 Modularity
 train binary classifiers once
 can be used with different 

combiners

 Ranking ability
 provides a ranking of classes 

for free

 Complexity?
 we have to learn a quadratic 

number of theories...
 but with fewer examples
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Proof: 
● each of the n training examples occurs in all binary tasks where its 

class is paired with one of the other c−1 classes

Training Complexity of PC

Lemma: The total number of training examples for all binary 
classifiers in a pairwise classification ensemble is (c–1)∙n 

Lemma: The total number of training examples for all binary 
classifiers in a pairwise classification ensemble is (c–1)∙n 

Proof Sketch: 
● one-against-all binarization needs a total of  c∙n examples
● fewer training examples are distributed over more classifiers
● more small training sets are faster to train than few large training 

sets
● for complexity f(n) = no (o > 1): o1∑ ni

o∑ ni
o

Theorem: For learning algorithms with at least linear complexity, 
pairwise classification is more efficient than one-against-all. 

Theorem: For learning algorithms with at least linear complexity, 
pairwise classification is more efficient than one-against-all. 
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Preference Data 

 No. Education Marital S. Sex. Children? Car Preferences

1 Primary Single M N Sports > Family

2 Primary Single M Y Family > Sports, Family > Mini

3 Primary Married M N Sports > Family > Mini

4 University Divorced F N Mini > Family

5 University Married F Y Mini > Sports

6 Secondary Single M N Sports > Mini > Family

7 University Single F N Mini > Family, Mini > Sports

8 Secondary Divorced F N Mini > Sports

9 Secondary Single F Y Mini > Sports, Family > Sports

10 Secondary Married M Y Family > Mini

11 Primary Married F N Mini > Family

12 Secondary Divorced M Y Family > Sports > Mini

13 University Divorced F Y Sports > Mini, Family > Mini

14 Secondary Divorced M N Sports > Mini
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Class Information encodes Preferences

A1 A2 A3 Label Pref.

1 1 1 a a > b  | a > c

1 1 0 c c > b  | c > a

1 0 1 c c > b  | c > a

1 0 0 b b > a  | b > c

0 0 0 c c > b  | c > a

0 1 0 c c > b  | c > a

0 1 1 a a > b  | a > c

example with
unknown class label

A1 A2 A3 Label

0 0 1 b 

A1 A2 A3 Label

0 0 1 ? 

dataset with
 class label for 
each example

Label
Preference 

Learner

a > b means: 
for this example 
label a is 
preferred over 
label b
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General Label Preference 
Learning Problem

A1 A2 A3 Pref.

1 1 1 a > b | b > c

1 1 0 a > b | c > b 

1 0 1 b > a

1 0 0 b > a | a > c | c > b

0 0 0 c > a

0 1 0 c > b | c > a

0 1 1 a > c

example with
unknown preferences Label

Preference 
Learner

dataset with 
preferences for 
each example

A1 A2 A3 Pref.

0 0 1 b > a > c 

A1 A2 A3 Pref.

0 0 1 ?

Each example
may have an 
arbitrary 
number 
of preferences

We typically predict 
a complete ranking

(a total order)
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Label Ranking

GIVEN:
 a set of labels:
 a set of contexts:
 for each training context ek:
 a set of preferences

FIND:
 a label ranking function that orders the labels for any given 

context

GIVEN:
 a set of labels:
 a set of contexts:
 for each training context ek:
 a set of preferences

FIND:
 a label ranking function that orders the labels for any given 

context

Pk={λi k λ j }⊆L x L

E={ek∣k=1n }

L={i∣i=1c }

 Preference learning scenario in which
 contexts are characterized by features
 no information about the items is given except a unique name (a label)
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Pairwise Preference 
Learning

dataset with 
preferences for 
each example

A1 A2 A3 ab

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

A1 A2 A3 bc

1 1 1 1

1 1 0 0

1 0 0 0

0 1 0 0

A1 A2 A3 ac

1 0 0 1

0 0 0 0

0 1 0 0

0 1 1 1

A1 A2 A3 Pref.

0 0 1 ?

A1 A2 A3 Pref.

0 0 1 b  a  c 

b  a        |         b  c         |         a  c

A1 A2 A3 Pref.

1 1 1 a  b | b  c

1 1 0 a  b | c  b

1 0 1 b  a

1 0 0 b  a | a  c | c  b

A1 A2 A3 Pref.

0 0 0 c  a

0 1 0 c  b | c  a

0 1 1 a  c

Mab Mbc Mac

one dataset
for each

preference
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Regression

 No Education Marital S. Sex. Children? Income

1 Primary Single M N 20,000

2 Primary Single M Y 23,000

3 Primary Married M N 25,000

4 University Divorced F N 50,000

5 University Married F Y 60,000

6 Secondary Single M N 45,000

7 University Single F N 80,000

8 Secondary Divorced F N 55,000

9 Secondary Single F Y 30,000

10 Secondary Married M Y 75,000

11 Primary Married F N 35,000

12 Secondary Divorced M Y 70,000

13 University Divorced F Y 65,000

14 Secondary Divorced M N 38,000

Numeric Target
Variable
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Rule-Based Regression

 Regression trees are quite successful
 Work on directly learning regression rules was not yet able to 

match that performance
 Main Problem: How to define a good heuristic?

 Transformation approach:
 Reduce regression to classification 
 use the idea of ɛ-insensitive loss functions

proposed for SVMS:
 all examples in an ɛ-environment of the value

predicted in the rule head are considered to 
be positive, all others negative

 rules can then be learned using regular heuristics
for classification rules
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 Goal
 Learn a model of the energy consumption

of the heating system of the Venus express
 Approach
 Information about the consumption is 

available in hindsight
 can be used to train a model

 Best results obtained with ensembles
of regression trees
 local differences cannot be modeled

 but trends can be captured well

 Partner
 ESA / ESOC
 University of Cordoba

Application Example:
Venus Express Power Consumption
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Summary

 Rules can be learned via top-down hill-climbing
 add one condition at a time until the rule covers no more negative exs.

 Heuristics are needed for guiding the search
 can be visualize through isometrics in coverage space

 Rule Sets can be learned one rule at a time
 using the covering or separate-and conquer strategy

 Overfitting is a serious problem for all machine learning algorithms
 too close a fit to the training data may result in bad generalizations

 Pruning can be used to fight overfitting
 Pre-pruning and post-pruning can be efficiently integrated

 Multi-class problems can be addressed by multiple rule sets
 one-against-all classification or pairwise classification
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